How to compute a derivative

Computing derivatives of complicated functions

- How do you compute the derivatives in an LSTM or GRU cell?
- How do you compute derivatives of complicated functions in general
- In these slides we will give you some hints
- In the slides we will assume vector functions and vector activations
- But we will also give you scalar versions of the equations to provide intuition
- The two sets will be almost identical, except that when we deal with vector functions
- The notation becomes uglier and less intuitive
- We must ensure that the dimensions come out right
- Please compare vector versions of equations to their scalar counterparts for better intuition, if needed

First: Some notation and conventions

- We will refer to the derivative of scalar L with respect to x as $\nabla_{x} L$
- Regardless of whether the derivative is a scalar, vector, matrix or tensor
- The derivative of a scalar L w.r.t an $N \times 1$ column vector x is a $1 \times N$ row vector $\nabla_{x} L$
- The derivative of a scalar L w.r.t an $N \times M$ matrix X is an $M \times N$ matrix $\nabla_{X} L$
- Remember our gradient update rule : $W=W-\eta \nabla_{W} L^{T}$
- The derivative of an $N \times 1$ vector Y w.r.t an $M \times 1$ vector X is an $N \times M$ matrix $J_{X}(Y)$
- The Jacobian

Rules: 1 (scalar)

$$
z=W x
$$

- All terms are scalars
- $\frac{\partial L}{\partial z}$ is known

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=\frac{\partial L}{\partial z} W \\
& \frac{\partial L}{\partial W}=x \frac{\partial L}{\partial z}
\end{aligned}
$$

Rules: 1 (vector)

$$
z=W x
$$

- z is an $N \times 1$ vector
- x is an $M \times 1$ vector
- W is an $N \times M$ matrix
- L is a function of Z
- $\nabla_{z} L$ is known (and is a $1 \times N$ vector)

$$
\begin{aligned}
& \nabla_{x} L=\left(\nabla_{z} L\right) W \\
& \nabla_{W} L=x\left(\nabla_{z} L\right)
\end{aligned}
$$

Please verify that the dimensions match!

Rules: 2 (vector, schur multiply)

$$
z=x \circ y
$$

- x, y and z are all $N \times 1$ vectors
- "o" represents component-wise multiplication
- $\nabla_{z} L$ is known (and is a $1 \times N$ vector)

$$
\begin{aligned}
& \nabla_{x} L=\left(\nabla_{z} L\right) \circ y^{T} \\
& \nabla_{y} L=\left(\nabla_{z} L\right) \circ x^{T}
\end{aligned}
$$

Please verify that the dimensions match!

Rules: 3 (scalar)

$$
z=x+y
$$

- All terms are scalars
- $\frac{\partial L}{\partial z}$ is known

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=\frac{\partial L}{\partial z} \\
& \frac{\partial L}{\partial y}=\frac{\partial L}{\partial z}
\end{aligned}
$$

Rules: 3 (vector)

$$
z=x+y
$$

- x, y and z are all $N \times 1$ vectors
- $\nabla_{z} L$ is known (and is a $1 \times N$ vector)

$$
\begin{aligned}
& \nabla_{x} L=\nabla_{z} L \\
& \nabla_{y} L=\nabla_{z} L
\end{aligned}
$$

Please verify that the dimensions match!

Rules: 4 (scalar)

$$
z=g(x)
$$

- x and z are scalars
- $\frac{\partial L}{\partial z}$ is known

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial z} g^{\prime}(x)
$$

Rules: 4 (vector)

$$
z=g(x)
$$

- x and z are $N \times 1$ vectors
- $\nabla_{Z} L$ is known (and is a $1 \times N$ vector)
- $J_{x} g$ is the Jacobian of $g(x)$ with respect to x
- May be a diagonal matrix

$$
\nabla_{x} L=\nabla_{z} L J_{x} g
$$

Please verify that the dimensions match!

Rules: 4b (vector)

 component-wise multiply notation$$
z=g(x)
$$

- x and z are $N \times 1$ vectors
- $\nabla_{z} L$ is known (and is a $1 \times N$ vector)
- $g(x)$ is actually a vector of component-wise functions
- i.e. $z_{i}=g\left(x_{i}\right)$
- $g^{\prime}(x)$ is a column vector consisting of the derivatives of the individual components of $g(x)$ w.r.t individual components of x

$$
\nabla_{x} L=\nabla_{z} L \circ g^{\prime}(x)^{T} \begin{aligned}
& \text { Please verify that the } \\
& \text { dimensions match! }
\end{aligned}
$$

Rule 5: Addition of derivatives

- Given two variables

$$
\begin{aligned}
& z=g(x) \\
& y=h(x)
\end{aligned}
$$

- And given $\frac{\partial L}{\partial y}$ and $\frac{\partial L}{\partial z}$
- we get

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial z} g^{\prime}(x)+\frac{\partial L}{\partial y} h^{\prime}(x)
$$

- The rule also extends to vector derivatives

Computing derivatives of complex functions

- We now are prepared to compute very complex derivatives
- Procedure:
- Express the computation as a series of computations of intermediate values
- Each computation must comprise either a unary or binary relation
- Unary relation: RHS has one argument, e.g. $y=g(x)$
- Binary relation: RHS has two arguments

$$
\text { e.g. } z=x+y \text { or } z=x y
$$

- Work your way backward through the derivatives of the simple relations

Example: LSTM

- Full set of LSTM equations (in the order in which they must be computed)

$$
\begin{array}{ll}
1 & f_{t}=\sigma\left(W_{f} \cdot\left[C_{t-1}, h_{t-1}, x_{t}\right]+b_{f}\right) \\
2 & i_{t}=\sigma\left(W_{i} \cdot\left[C_{t-1}, h_{t-1}, x_{t}\right]+b_{i}\right) \\
3 & \tilde{C}_{t}=\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right) \\
4 & C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t} \\
5 & o_{t}=\sigma\left(W_{o} \cdot\left[C_{t}, h_{t-1}, x_{t}\right]+b_{o}\right) \\
6 & h_{t}=o_{t} * \tanh \left(C_{t}\right)
\end{array}
$$

- Its actually much cleaner to separate the individual components, so lets do that first

LSTM

1. $f_{t}=\sigma\left(W_{f C} C_{t-1}+W_{f h} h_{t-1}+W_{f x} x_{t}+b_{f}\right)$
2. $i_{t}=\sigma\left(W_{i C} C_{t-1}+W_{i h} h_{t-1}+W_{i x} x_{t}+b_{i}\right)$
3. $\tilde{C}_{t}=\sigma\left(W_{C h} h_{t-1}+W_{C x} x_{t}+b_{C}\right)$
4. $C_{t}=f_{t} \circ C_{t-1}+i_{t} \circ \tilde{C}_{t}$
5. $o_{t}=\sigma\left(W_{o c} C_{t-1}+W_{o h} h_{t-1}+W_{o x} x_{t}+b_{o}\right)$
6. $h_{t}=o_{t} \circ \tanh \left(C_{t}\right)$

- This is the full set of equations in the order in which they must be computed
- Lets rewrite these in terms of unary and binary operations

LSTM

- Lets rewrite these in terms of unary and binary operations

LSTM

1. $z_{1}=W_{f C} C_{t-1}$
2. $z_{2}=W_{f h} h_{t-1}$
3. $z_{3}=z_{1}+z_{2}$
4. $z_{4}=W_{f x} x_{t}$
5. $z_{5}=z_{3}+z_{4}$
6. $z_{6}=z_{5}+b_{f}$
7. $f_{t}=\sigma\left(z_{6}\right)$

LSTM

1. $f_{t}=\sigma\left(W_{f c} C_{t-1}+W_{f h} h_{t-1}+W_{f r} x_{t}+b_{f}\right)$
2. $i_{t}=\sigma\left(W_{i C} C_{t-1}+W_{i h} h_{t-1}+W_{i x} x_{t}+b_{i}\right)$
3. $\tilde{C}_{t}=\sigma\left(W_{C h} h_{t-1}+W_{C x} x_{t}+b_{C}\right)$
4. $C_{t}=f_{t} \circ C_{t-1}+i_{t} \circ \tilde{C}_{t}$
5. $o_{t}=\sigma\left(W_{o c} C_{t-1}+W_{o h} h_{t-1}+W_{o x} x_{t}+b_{o}\right)$

$$
\begin{array}{c|}
\hline z_{7}=W_{i C} C_{t-1} \\
z_{8}=W_{i h} h_{t-1} \\
z_{9}=z_{7}+z_{8} \\
z_{10}=W_{i x} x_{t} \\
z_{11}=z_{9}+z_{10} \\
z_{12}=z_{11}+b_{i} \\
i_{t}=\sigma\left(z_{12}\right) \\
\hline
\end{array}
$$

6. $h_{t}=o_{t} \circ \tanh \left(C_{t}\right)$

- Lets rewrite these in terms of unary and binary operations

LSTM

1. $z_{1}=W_{f C} C_{t-1}$
2. $z_{2}=W_{f h} h_{t-1}$
3. $z_{3}=z_{1}+z_{2}$
4. $z_{4}=W_{f x} x_{t}$
5. $z_{5}=z_{3}+z_{4}$
6. $z_{6}=z_{5}+b_{f}$
7. $f_{t}=\sigma\left(z_{6}\right)$
8. $z_{7}=W_{i C} C_{t-1}$
9. $z_{8}=W_{i h} h_{t-1}$
10. $z_{9}=z_{7}+z_{8}$
11. $z_{10}=W_{i x} x_{t}$
12. $z_{11}=z_{9}+z_{10}$
13. $z_{12}=z_{11}+b_{i}$
14. $i_{t}=\sigma\left(z_{12}\right)$

LSTM

1. $f_{t}=\sigma\left(W_{f C} C_{t-1}+W_{f h} h_{t-1}+W_{f x} x_{t}+b_{f}\right)$
2. $i_{t}=\sigma\left(W_{i C} C_{t-1}+W_{i h} h_{t-1}+W_{i x} x_{t}+b_{i}\right)$
3. $\tilde{C}_{t}=\sigma\left(W_{C h} h_{t-1}+W_{C x} x_{t}+b_{C}\right)$

$$
\begin{gathered}
z_{13}=W_{C h} h_{t-1} \\
z_{14}=W_{C x} x_{t} \\
z_{15}=z_{13}+z_{14} \\
z_{16}=z_{15}+b_{C} \\
\tilde{C}_{t}=\sigma\left(z_{16}\right) \\
\hline
\end{gathered}
$$

4. $C_{t}=f_{t} \circ C_{t-1}+i_{t} \circ C_{t}$
5. $o_{t}=\sigma\left(W_{o C} C_{t-1}+W_{o h} h_{t-1}+W_{o x} x_{t}+b_{o}\right)$
6. $h_{t}=o_{t} \circ \tanh \left(C_{t}\right)$

- Lets rewrite these in terms of unary and binary operations

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$

LSTM

1. $f_{t}=\sigma\left(W_{f C} C_{t-1}+W_{f h} h_{t-1}+W_{f x} x_{t}+b_{f}\right)$
2. $i_{t}=\sigma\left(W_{i C} C_{t-1}+W_{i h} h_{t-1}+W_{i x} x_{t}+b_{i}\right)$
3. $\tilde{C}_{t}=\sigma\left(W_{C h} h_{t-1}+W_{C x} x_{t}+b_{C}\right)$
4. $C_{t}=f_{t} \circ C_{t-1}+i_{t} \circ \tilde{C}_{t}$

$$
\begin{gathered}
\hline z_{17}=f_{t} \circ C_{t-1} \\
z_{18}=i_{t} \circ \tilde{C}_{t} \\
C_{t}=z_{17}+z_{18} \\
\hline
\end{gathered}
$$

5. $o_{t}=\sigma\left(W_{o c} C_{t-1}+W_{o h} h_{t-1}+W_{o x} x_{t}+b_{o}\right)$
6. $h_{t}=o_{t} \circ \tanh \left(C_{t}\right)$

- Lets rewrite these in terms of unary and binary operations

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$

LSTM

1. $f_{t}=\sigma\left(W_{f c} C_{t-1}+W_{f n} h_{t-1}+W_{f x} x_{t}+b_{f}\right)$	${ }_{19}=W_{o c} C_{t-1}$
2. $i_{t}=\sigma\left(W_{i C} C_{t-1}+W_{i h} h_{t-1}+W_{i x} x_{t}+b_{i}\right)$	$z_{20}=W_{\text {oh }} h_{t-1}$
3. $\tilde{C}_{t}=\sigma\left(W_{C h} h_{t-1}+W_{C x} x_{t}+b_{C}\right)$	$\begin{gathered} z_{21}=z_{19}+z_{20} \\ z_{22}=W_{o x} x_{t} \end{gathered}$
4. $C_{t}=f_{+} \circ C_{t-1}+i_{+} \circ \tilde{C}_{t}$	$z_{23}=z_{21}+z_{22}$
5. $o_{t}=\sigma\left(W_{o c} C_{t-1}+W_{o h} h_{t-1}+W_{o x} x_{t}+b_{o}\right)$	$\begin{gathered} z_{24}=z_{23}+b_{o} \\ o_{t}=\sigma\left(z_{24}\right) \end{gathered}$
6. $h_{t}=o_{t} \circ \tanh \left(C_{t}\right)$	

- Lets rewrite these in terms of unary and binary operations

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $z_{19}=W_{o C} C_{t-1}$
24. $z_{20}=W_{o h} h_{t-1}$
25. $z_{21}=z_{19}+z_{20}$
26. $z_{22}=W_{o x} x_{t}$
27. $z_{23}=z_{21}+z_{22}$
28. $z_{24}=z_{23}+b_{0}$
29. $o_{t}=\sigma\left(z_{24}\right)$

LSTM

1. $f_{t}=\sigma\left(W_{f c} C_{t-1}+W_{f h} h_{t-1}+W_{f x} x_{t}+b_{f}\right)$
2. $i_{t}=\sigma\left(W_{i c} C_{t-1}+W_{i h} h_{t-1}+W_{i x} x_{t}+b_{i}\right)$
3. $\tilde{C}_{t}=\sigma\left(W_{C h} h_{t-1}+W_{C x} x_{t}+b_{C}\right)$
4. $C_{t}=f_{t} \circ C_{t-1}+i_{t} \circ \tilde{C}_{t}$
5. $o_{t}=\sigma\left(W_{o c} C_{t-1}+W_{o h} h_{t-1}+W_{o x} x_{t}+b_{o}\right)$
6. $h_{t}=o_{t} \circ \tanh \left(C_{t}\right)$

$$
\begin{aligned}
z_{25} & =\tanh \left(C_{t}\right) \\
h_{t} & =o_{t} \circ z_{25}
\end{aligned}
$$

- Lets rewrite these in terms of unary and binary operations

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $z_{19}=W_{o C} C_{t-1}$
24. $z_{20}=W_{o h} h_{t-1}$
25. $z_{21}=z_{19}+z_{20}$
26. $z_{22}=W_{o x} x_{t}$
27. $z_{23}=z_{21}+z_{22}$
28. $z_{24}=z_{23}+b_{o}$
29. $o_{t}=\sigma\left(z_{24}\right)$
30. $z_{25}=\tanh \left(C_{t}\right)$
31. $h_{t}=o_{t} \circ Z_{25}$

LSTM forward

- The full forward computation of the LSTM can be performed by computing Equations 1-31 in sequence
- Every one of these equations is unary or binary

LSTM

1. $z_{1}=W_{f C} C_{t-1}$
2. $z_{2}=W_{f h} h_{t-1}$
3. $z_{3}=z_{1}+z_{2}$
4. $z_{4}=W_{f x} x_{t}$
5. $z_{5}=z_{3}+z_{4}$
6. $z_{6}=z_{5}+b_{f}$
7. $f_{t}=\sigma\left(z_{6}\right)$
8. $z_{7}=W_{i C} C_{t-1}$
9. $z_{8}=W_{i h} h_{t-1}$
10. $z_{9}=z_{7}+z_{8}$
11. $z_{10}=W_{i x} x_{t}$
12. $z_{11}=z_{9}+z_{10}$
13. $z_{12}=z_{11}+b_{i}$
14. $i_{t}=\sigma\left(z_{12}\right)$

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $z_{19}=W_{o C} C_{t-1}$
24. $z_{20}=W_{o h} h_{t-1}$
25. $z_{21}=z_{19}+z_{20}$
26. $z_{22}=W_{o x} x_{t}$
27. $z_{23}=z_{21}+z_{22}$
28. $z_{24}=z_{23}+b_{o}$
29. $o_{t}=\sigma\left(z_{24}\right)$
30. $z_{25}=\tanh \left(C_{t}\right)$
31. $h_{t}=o_{t} \circ Z_{25}$

Computing derivatives

- We will now work our way backward
- We assume derivatives $\frac{d L}{d h_{t}}$ and $\frac{d L}{d C_{t}}$ of the loss w.r.t h_{t} and C_{t} are given
- We must compute $\frac{d L}{d C_{t-1}}, \frac{d L}{d h_{t-1}}$ and $\frac{d L}{d x_{t}}$
- And also derivatives w.r.t the parameters within the cell
- Recall: the shape of the derivative for any variable will be transposed with respect to that variable

LSTM

1. $\nabla_{o_{t}} L=\nabla_{h_{t}} L \circ Z_{25}^{T}$
2. $\nabla_{Z_{25}} L=\nabla_{h_{t}} L \circ o_{t}^{T}$
3. $z_{19}=W_{o C} C_{t-1}$
4. $z_{20}=W_{o h} h_{t-1}$
5. $z_{21}=z_{19}+z_{20}$
6. $z_{22}=W_{o x} x_{t}$
7. $z_{23}=z_{21}+z_{22}$
8. $z_{24}=z_{23}+b_{o}$
9. $o_{t}=\sigma\left(z_{24}\right)$
10. $z_{25}=\tanh \left(C_{t}\right)$
11. $h_{t}=o_{t} \circ Z_{25}$

LSTM

1. $\nabla_{o_{t}} L=\nabla_{h_{t}} L \circ z_{25}^{T}$
2. $\nabla_{Z_{25}} L=\nabla_{h_{t}} L \circ o_{t}^{T}$
3. $\nabla_{C_{t}} L=\nabla_{Z_{25}} L \circ$
$\left(1-\tanh ^{2}\left(C_{t}\right)\right)^{T}$
4. $z_{19}=W_{o C} C_{t-1}$
5. $z_{20}=W_{o h} h_{t-1}$
6. $z_{21}=z_{19}+z_{20}$
7. $z_{22}=W_{o x} x_{t}$
8. $z_{23}=z_{21}+z_{22}$
9. $z_{24}=z_{23}+b_{o}$
10. $o_{t}=\sigma\left(z_{24}\right)$
11. $z_{25}=\tanh \left(C_{t}\right)$
12. $h_{t}=o_{t} \circ Z_{25}$

LSTM

1. $\nabla_{o_{t}} L=\nabla_{h_{t}} L \circ z_{25}^{T}$
2. $\nabla_{Z_{25}} L=\nabla_{h_{t}} L \circ o_{t}^{T}$
3. $\nabla_{C_{t}} L=\nabla_{Z_{25}} L \circ$
$\left(1-\tanh ^{2}\left(C_{t}\right)\right)^{T}$
4. $\nabla_{z_{24}} L=\nabla_{o_{t}} L \circ \sigma\left(z_{24}\right)^{T}$ 。

$$
\left(1-\sigma\left(z_{24}\right)\right)^{T}
$$

23. $z_{19}=W_{o C} C_{t-1}$
24. $z_{20}=W_{o h} h_{t-1}$
25. $z_{21}=z_{19}+z_{20}$
26. $z_{22}=W_{o x} x_{t}$
27. $z_{23}=z_{21}+z_{22}$
28. $z_{24}=z_{23}+b_{0}$
29. $o_{t}=\sigma\left(z_{24}\right)$
30. $Z_{25}=\tanh \left(C_{t}\right)$
31. $h_{t}=o_{t} \circ Z_{25}$

LSTM

1. $\nabla_{o_{t}} L=\nabla_{h_{t}} L \circ Z_{25}^{T}$
2. $\nabla_{Z_{25}} L=\nabla_{h_{t}} L \circ o_{t}^{T}$
3. $\nabla_{C_{t}} L=\nabla_{Z_{25}} L \circ$
$\left(1-\tanh ^{2}\left(C_{t}\right)\right)^{T}$
4. $\nabla_{z_{24}} L=\nabla_{o_{t}} L \circ \sigma\left(z_{24}\right)^{T}$ 。 $\left(1-\sigma\left(z_{24}\right)\right)^{T}$
5. $\nabla_{Z_{23}} L=\nabla_{z_{24}} L$
6. $\nabla_{b_{o}} L=\nabla_{Z_{24}} L$
7. $z_{19}=W_{o C} C_{t-1}$
8. $z_{20}=W_{o h} h_{t-1}$
9. $z_{21}=z_{19}+z_{20}$
10. $z_{22}=W_{o x} x_{t}$
11. $z_{23}=z_{21}+z_{22}$
12. $z_{24}=z_{23}+b_{0}$
13. $o_{t}=\sigma\left(Z_{24}\right)$
14. $z_{25}=\tanh \left(C_{t}\right)$
15. $h_{t}=o_{t} \circ Z_{25}$

Equations highlighted in yellow show derivatives w.r.t. parameters

LSTM

7. $\nabla_{Z_{22}} L=\nabla_{Z_{23}} L$ 8. $\nabla_{Z_{21}} L=\nabla_{Z_{23}} L$
8. $z_{19}=W_{o C} C_{t-1}$
9. $z_{20}=W_{o h} h_{t-1}$
10. $z_{21}=z_{19}+z_{20}$
11. $z_{22}=W_{0 x} x_{+}$
12. $z_{23}=z_{21}+z_{22}$
13. $z_{24}=z_{23}+b_{o}$
14. $o_{t}=\sigma\left(z_{24}\right)$
15. $z_{25}=\tanh \left(C_{t}\right)$
16. $h_{t}=o_{t} \circ Z_{25}$

LSTM

7. $\nabla_{Z_{22}} L=\nabla_{Z_{23}} L$
8. $\nabla_{Z_{21}} L=\nabla_{Z_{23}} L$
9. $\nabla_{W_{o x}} L=x_{t} \nabla_{z_{22}} L$
10. $\nabla_{x_{t}} L=\nabla_{z_{22}} L W_{o x}$
11. $z_{19}=W_{o C} C_{t-1}$
12. $z_{20}=W_{o h} h_{t-1}$
13. $z_{21}=z_{19}+z_{20}$
14. $z_{22}=W_{o x} x_{t}$
15. $z_{23}=Z_{21}+z_{22}$
16. $z_{24}=z_{23}+b_{o}$
17. $o_{t}=\sigma\left(z_{24}\right)$
18. $z_{25}=\tanh \left(C_{t}\right)$
19. $h_{t}=o_{t} \circ Z_{25}$

LSTM

7. $\nabla_{Z_{22}} L=\nabla_{Z_{23}} L$
8. $\nabla_{Z_{21}} L=\nabla_{Z_{23}} L$
9. $\nabla_{W_{o x}} L=x_{t} \nabla_{Z_{22}} L$
10. $\nabla_{x_{t}} L=\nabla_{z_{22}} L W_{o x}$
11. $\nabla_{Z_{20}} L=\nabla_{Z_{21}} L$
12. $\nabla_{Z_{19}} L=\nabla_{Z_{21}} L$
13. $z_{19}=W_{o C} C_{t-1}$
14. $z_{20}=W_{o h} h_{t-1}$
15. $z_{21}=z_{19}+z_{20}$
16. $z_{22}=W_{o x} x_{t}$
17. $z_{23}=z_{21}+z_{22}$
18. $z_{24}=z_{23}+b_{o}$
19. $o_{t}=\sigma\left(z_{24}\right)$
20. $z_{25}=\tanh \left(C_{t}\right)$
21. $h_{t}=o_{t} \circ Z_{25}$

LSTM

7. $\nabla_{Z_{22}} L=\nabla_{Z_{23}} L$
8. $\nabla_{Z_{21}} L=\nabla_{Z_{23}} L$
9. $\nabla_{W_{o x}} L=x_{t} \nabla_{Z_{22}} L$
10. $\nabla_{x_{t}} L=\nabla_{z_{22}} L W_{o x}$
11. $\nabla_{Z_{20}} L=\nabla_{Z_{21}} L$
12. $\nabla_{Z_{19}} L=\nabla_{Z_{21}} L$
13. $\nabla_{W_{o h}} L=h_{t-1} \nabla_{Z_{20}} L$
14. $\nabla_{h_{t-1}} L=\nabla_{Z_{20}} L W_{\text {oh }}$
15. $z_{19}=W_{0 c} C_{t-1}$
16. $z_{20}=W_{o h} h_{t-1}$
17. $z_{21}=z_{19}+z_{20}$
18. $z_{22}=W_{o x} x_{t}$
19. $z_{23}=z_{21}+z_{22}$
20. $z_{24}=z_{23}+b_{o}$
21. $o_{t}=\sigma\left(z_{24}\right)$
22. $z_{25}=\tanh \left(C_{t}\right)$
23. $h_{t}=o_{t} \circ Z_{25}$

LSTM

7. $\nabla_{Z_{22}} L=\nabla_{Z_{23}} L$
8. $\nabla_{Z_{21}} L=\nabla_{Z_{23}} L$
9. $\nabla_{W_{o x}} L=x_{t} \nabla_{Z_{22}} L$
10. $\nabla_{x_{t}} L=\nabla_{z_{22}} L W_{o x}$
11. $\nabla_{z_{20}} L=\nabla_{z_{21}} L$
12. $\nabla_{Z_{19}} L=\nabla_{Z_{21}} L$
13. $\nabla_{W_{o h}} L=h_{t-1} \nabla_{z_{20}} L$
14. $\nabla_{h_{t-1}} L=\nabla_{Z_{20}} L W_{o h}$
15. $\nabla_{W_{o c}} L=C_{t-1} \nabla_{Z_{19}} L$
16. $\nabla_{C_{t-1}} L=\nabla_{z_{19}} L W_{o C}$
17. $z_{19}=W_{o C} C_{t-1}$
18. $z_{20}=W_{o h} h_{t-1}$
19. $z_{21}=z_{19}+z_{20}$
20. $z_{22}=W_{o x} x_{t}$
21. $z_{23}=z_{21}+z_{22}$
22. $z_{24}=z_{23}+b_{o}$
23. $o_{t}=\sigma\left(z_{24}\right)$
24. $z_{25}=\tanh \left(C_{t}\right)$
25. $h_{t}=o_{t} \circ Z_{25}$

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $\nabla_{z_{18}} L=\nabla_{C_{t}} L$
24. $\nabla_{Z_{17}} L=\nabla_{C_{t}} L$

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $\nabla_{z_{18}} L=\nabla_{C_{t}} L$
24. $\nabla_{z_{17}} L=\nabla_{C_{t}} L$
25. $\nabla_{i_{t}} L=\nabla_{z_{18}} L \circ \tilde{C}_{t}^{T}$
26. $\nabla_{\tilde{C}_{t}} L=\nabla_{Z_{18}} L \circ i_{t}^{T}$

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $\nabla_{z_{18}} L=\nabla_{C_{t}} L$
24. $\nabla_{z_{17}} L=\nabla_{C_{t}} L$
25. $\nabla_{i_{t}} L=\nabla_{z_{18}} L \circ \tilde{C}_{t}^{T}$
26. $\nabla_{\tilde{C}_{t}} L=\nabla_{z_{18}} L \circ i_{t}^{T}$
27. $\nabla_{C_{t-1}} L+=\nabla_{z_{17}} L \circ f_{t}^{T}$
28. $\nabla_{f_{t}} L=\nabla_{z_{17}} L \circ C_{t-1}^{T}$

Second time we're computing a derivative for C_{t-1}, so we increment the derivative (" $+=$ ")

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $\nabla_{Z_{18}} L=\nabla_{C_{t}} L$
24. $\nabla_{z_{17}} L=\nabla_{C_{t}} L$
25. $\nabla_{i_{t}} L=\nabla_{z_{18}} L \circ \tilde{C}_{t}^{T}$
26. $\nabla_{\tilde{C}_{t}} L=\nabla_{z_{18}} L \circ i_{t}^{T}$
27. $\nabla_{C_{t-1}} L+=\nabla_{z_{17}} L \circ f_{t}^{T}$
28. $\nabla_{f_{t}} L=\nabla_{z_{17}} L \circ C_{t-1}^{T}$
29. $\nabla_{z_{16}} L=\nabla_{\tilde{C}_{t}} L \circ \sigma\left(z_{16}\right)^{T} \circ$
$\left(1-\sigma\left(z_{16}\right)\right)^{T}$

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $\nabla_{b_{C}} L=\nabla_{Z_{16}} L$
24. $\nabla_{Z_{15}} L=\nabla_{Z_{16}} L$

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $\nabla_{b_{C}} L=\nabla_{z_{16}} L$
24. $\nabla_{z_{15}} L=\nabla_{z_{16}} L$
25. $\nabla_{b_{C}} L=\nabla_{z_{16}} L$
26. $\nabla_{Z_{15}} L=\nabla_{Z_{16}} L$

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{14}=W_{C x} x_{t}$
17. $z_{15}=z_{13}+z_{14}$
18. $z_{16}=z_{15}+b_{C}$
19. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
20. $z_{17}=f_{t} \circ C_{t-1}$
21. $z_{18}=i_{t} \circ \tilde{C}_{t}$
22. $C_{t}=z_{17}+z_{18}$
23. $\nabla_{b_{C}} L=\nabla_{Z_{16}} L$
24. $\nabla_{z_{15}} L=\nabla_{z_{16}} L$
25. $\nabla_{b_{C}} L=\nabla_{z_{16}} L$
26. $\nabla_{z_{15}} L=\nabla_{z_{16}} L$
27. $\nabla_{W_{C x}} L=x_{t} \nabla_{z_{14}} L$
28. $\nabla_{x_{t}} L+=\nabla_{z_{14}} L W_{C x}$

Note the "+="

LSTM

15. $z_{13}=W_{C h} h_{t-1}$
16. $z_{15}=z_{13}+z_{14}$
17. $z_{16}=z_{15}+b_{C}$
18. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
19. $z_{17}=f_{t} \circ C_{t-1}$
20. $z_{18}=i_{t} \circ \tilde{C}_{t}$
21. $C_{t}=z_{17}+z_{18}$
22. $\nabla_{b_{C}} L=\nabla_{Z_{16}} L$
23. $\nabla_{z_{15}} L=\nabla_{z_{16}} L$
24. $\nabla_{b_{C}} L=\nabla_{z_{16}} L$
25. $\nabla_{Z_{15}} L=\nabla_{Z_{16}} L$
26. $\nabla_{W_{C x}} L=x_{t} \nabla_{Z_{14}} L$
27. $\nabla_{x_{t}} L+=\nabla_{z_{14}} L W_{C x}$
28. $\nabla_{W_{C h}} L=h_{t-1} \nabla_{Z_{14}} L$
29. $\nabla_{h_{t-1}} L+=\nabla_{z_{13}} L W_{C h}$

Note the "+="

Continuing the computation

- Continue the backward progression until the derivatives from forward Equation 1 have been computed
- At this point all derivatives will be computed.

Overall procedure

- Express the overall computation as a sequence of unary or binary operations
- Can be automated
- Computes derivatives incrementally, going backward over the sequence of equations!
- Since each atomic computation is simple and belongs to one of a small set of possibilities, the conversion to derivatives is trivial once the computation is serialized as above

May be easier to think of it in terms of a "derivative" routine

- Define a routine that returns derivatives for unary and binary operations
- SCALAR version (all variables are scalars)

```
function deriv(dz, x, y, operator)
    case operator:
    'none' : return dx
    '*' : return x*dz, dz*x
    '+' : return dz, dz
    '-' : return dz, -dz
    # Single argument operations
    'tanh' : return dz(1-tanh2(x))
    'sigmoid' : return dz sigmoid(x) (1-sigmoid(x))
```


Derivative routine, vector version

- Note distinction between component-wise and matrix multiplies
- Observe also that matrix and vector dimensions are correctly handled (locally)
- " \circ " is component-wise multiply
- "*" is matrix multiply

```
function deriv(dz, x, y, operator)
    case operator:
        'none' : return dx
        # component-wise "schur" multiply
        `o' : return dzo x', dz o ' }\mp@subsup{\mathbf{Y}}{}{T
        # Matrix multiply. X must be a matrix
        '*' : return x*dz, dz*x
        '+' : return dz, dz
    '-' : return dz, -dz
    # The following will expect a single argument
    'tanh' : return dzo(1-tanh 2(x))}\mp@subsup{}{}{T
    'sigmoid' : return dzosigmoid(x)}\mp@subsup{}{}{T}\circ(1-sigmoid(x))T,
    # The jacobian is the full derivative matrix of the sigmoid
    'softmax' : return dz*Jacobian(sigmoid,x)
```


When to use "=" vs "+="

- In the forward computation a variable may be used multiple times to compute other intermediate variables
- During backward computations, the first time the derivative is computed for the variable, the we will use "="
- In subsequent computations we use "+="
- It may be difficult to keep track of when we first compute the derivative for a variable
- When to use "=" vs when to use "+="
- Cheap trick:
- Initialize all derivatives to 0 during computation
- Always use "+="
- You will get the correct answer (why?)
$\left[d C_{t-1}, d x_{t}, d h_{t-1}, d[W, b]\right]=$ LSTM_derivative $\left(\mathrm{dC}_{\mathrm{t}} \mathrm{dh}_{\mathrm{t}}\right)$
initialize d(variable) $=0$ (all variables)
\# Derivative of eq. $31 h_{t}=o_{t} \circ Z_{25}$
[do $\mathrm{do}_{\mathrm{t}}, \mathrm{dz} \mathrm{z}_{25}$] += deriv($\mathrm{dh}_{\mathrm{t}}, \mathrm{o}_{\mathrm{t}}, \mathbf{z}_{25}$, $\left.^{\prime} \mathrm{o}^{\prime}\right)$
\# Derivative of eq. $30 z_{25}=\tanh \left(C_{t}\right)$

\# Derivative of eq. $29 o_{t}=\sigma\left(z_{24}\right)$
[dz ${ }_{25}$] += deriv($\mathrm{do}_{\mathrm{t}}, \mathbf{z}_{25}$,'sigmoid')
\# Derivative of eq. $28 z_{24}=z_{23}+b_{o}$
[$\mathrm{dz}_{23}, \mathrm{db}$ 。] += deriv($\mathrm{dz}_{24}, \mathrm{z}_{23}, \mathrm{~b}_{\mathrm{o}},^{\prime}+^{\prime}$)
\# Derivative of eq. $27 z_{23}=z_{21}+z_{22}$
[$\left.\mathrm{dz}_{21}, ~ d z_{22}\right]+=\operatorname{deriv}\left(\mathrm{dz}_{23}, \mathrm{z}_{21}, \mathrm{z}_{22} \prime^{\prime}+^{\prime}\right)$

23. $z_{19}=W_{o C} C_{t-1}$
24. $z_{20}=W_{o h} h_{t-1}$
25. $z_{21}=z_{19}+z_{20}$
26. $z_{22}=W_{o x} x_{t}$
27. $z_{23}=z_{21}+z_{22}$
28. $z_{24}=z_{23}+b_{o}$
29. $o_{t}=\sigma\left(z_{24}\right)$
30. $z_{25}=\tanh \left(C_{t}\right)$
31. $h_{t}=o_{t} \circ Z_{25}$
\# Derivative of eq. $26 z_{22}=W_{o x} x_{t}$
[dW $\left.{ }_{o x}, ~ d x_{t}\right] ~+=\operatorname{deriv}\left(\mathrm{dz}_{22}, \mathrm{~W}_{\mathrm{ox}}, \mathrm{x}_{\mathrm{t}},{ }^{\prime}{ }^{\prime \prime}\right.$)
\# Derivative of eq. $25 z_{21}=z_{19}+z_{20}$
[dz $\mathbf{z}_{19}, \mathrm{dz} \mathbf{z}_{20}$] += deriv($\mathrm{d} \mathbf{z}_{21}, \mathbf{z}_{19}, \mathbf{z}_{20} \prime^{\prime}+^{\prime}$)
\# Derivative of eq. $24 z_{20}=W_{o h} h_{t-1}$
[dW ${ }_{\mathrm{oh}}, \mathrm{dh}_{\mathrm{t}-1}$] $+=\operatorname{deriv}\left(\mathrm{dz}_{20}, \mathrm{~W}_{\mathrm{oh}}, \mathrm{h}_{\mathrm{t}-1},^{\prime}\right.$ *' $\left.^{\prime}\right)$
\# Derivative of eq. $23 z_{19}=W_{o C} C_{t-1}$
[$\left.\mathrm{dW}_{\mathrm{oC}}, \mathrm{dC}_{\mathrm{t}-1}\right]+=\operatorname{deriv}\left(\mathrm{dz}_{19}, \mathrm{~W}_{\mathrm{oC}}, \mathrm{C}_{\mathrm{t}-1},^{\prime}{ }^{\prime \prime}\right)$
... continued from previous slide
\# Derivative of eq. $22 C_{t}=z_{17}+z_{18}$
[dz $\left.{ }_{17}, ~ d z_{18}\right]+=\operatorname{deriv}\left(d C_{t}, z_{18}, z_{18} r^{\prime}+^{\prime}\right)$
\# Derivative of eq. $21 z_{18}=i_{t} \circ \tilde{C}_{t}$
[di $\left.{ }_{t}, ~ d t i l d e C_{t}\right] ~+=$ deriv(dz $\left.{ }_{18}, i_{t}, ~ d t i l d e C_{t},{ }^{\prime}{ }^{\prime}{ }^{\prime}\right)$
\# Derivative of eq. $20 \quad z_{17}=f_{t} \circ C_{t-1}$
[dft, $\mathrm{dC}_{\mathrm{t}-1}$] $+=\operatorname{deriv}\left(\mathrm{dz} \mathrm{d}_{17}, \mathrm{f}_{\mathrm{t}}, \mathrm{C}_{\mathrm{t}-1},{ }^{\prime}{ }^{\prime}{ }^{\prime}\right)$
32. $z_{13}=W_{c h} h_{t-1}$
\# Derivative of eq. $19 \tilde{C}_{t}=\sigma\left(z_{16}\right)$
[dz ${ }_{16}$] += deriv(dtildeC ${ }_{t}{ }^{\prime}{ }^{\prime}$ sigmoid')
\# Derivative of eq. $18 \quad z_{16}=z_{15}+b_{C}$ [$\mathrm{dz}_{15}, \mathrm{db}_{\mathrm{C}}$] $+=\operatorname{deriv}\left(\mathrm{d} \mathrm{z}_{16}, \mathrm{z}_{15}, \mathrm{~b}_{\mathrm{C}},^{\prime}+^{\prime}\right.$)
\# Derivative of eq. $17 z_{15}=z_{13}+z_{14}$
33. $z_{14}=W_{c x} x_{t}$
34. $z_{15}=z_{13}+z_{14}$
35. $z_{16}=z_{15}+b_{C}$
36. $\tilde{C}_{t}=\sigma\left(z_{16}\right)$
37. $z_{17}=f_{t} \circ C_{t-1}$
38. $z_{18}=i_{t} \circ \tilde{C}_{t}$
39. $C_{t}=z_{17}+z_{18}$
[dz $\left.{ }_{13}, ~ d z_{14}\right] ~+=\operatorname{deriv}\left(d z_{15}, z_{13}, \mathbf{z}_{14},{ }^{\prime}+^{\prime}\right)$
\# Derivative of eq. $16 z_{14}=W_{C x} x_{t}$
[$\mathrm{dW}_{\mathrm{Cx}}, ~ \mathrm{~d} \mathrm{x}_{\mathrm{t}}$] $+=\operatorname{deriv}\left(\mathrm{dz}_{14}, \mathrm{~W}_{\mathrm{Cx}}, \mathrm{x}_{\mathrm{t}},{ }^{\prime}{ }^{\prime \prime}{ }^{\prime}\right)$
\# Derivative of eq. $15 z_{13}=W_{C h} h_{t-1}$
$\left[\mathrm{dW}_{\mathrm{Ch}}, ~ d h_{\mathrm{t}-1}\right]+=\operatorname{deriv}\left(\mathrm{dz}_{13}, \mathrm{~W}_{\mathrm{Ch}}, \mathrm{h}_{\mathrm{t}-1},{ }^{\prime}{ }^{\prime \prime}\right)$
... continued from previous slide \# Derivative of eq. $14 i_{t}=\sigma\left(z_{12}\right)$ [dz ${ }_{12}$] += deriv(di ${ }_{t}{ }^{\prime}$ sigmoid')
\# Derivative of eq. $13 z_{12}=z_{11}+b_{f}$ [$\mathrm{dz}_{11}, \mathrm{db}_{\mathrm{i}}$] $+=\operatorname{deriv}\left(\mathrm{d} \mathbf{z}_{12}, \mathrm{z}_{11}, \mathrm{~b}_{\mathrm{i}},{ }^{\prime}+^{\prime}\right)$
\# Derivative of eq. $12 z_{11}=z_{9}+z_{10}$ [dza, $\left.d z_{10}\right]+=\operatorname{deriv}\left(d z_{11}, z_{9}, z_{10},^{\prime}+^{\prime}\right)$
\# Derivative of eq. $11 z_{10}=W_{i x} x_{t}$ [dW $\left.{ }_{i x}, ~ d x_{t}\right]+=\operatorname{deriv}\left(d z_{10}, W_{i x}, x_{t},{ }^{\prime}+^{\prime}\right)$
\# Derivative of eq. $10 \quad z_{9}=z_{7}+z_{8}$ [$\mathrm{dz} \mathbf{z}_{7}, \mathrm{~d} \mathrm{z}_{8}$] += deriv($\left.\mathrm{d} \mathrm{z}_{9}, \mathrm{z}_{7}, \mathrm{z}_{8},{ }^{\prime}+^{\prime}\right)$
40. $z_{7}=W_{i C} C_{t-1}$
41. $z_{8}=W_{i h} h_{t-1}$
42. $z_{9}=z_{7}+z_{8}$
43. $z_{10}=W_{i x} x_{t}$
44. $z_{11}=z_{9}+z_{10}$
45. $z_{12}=z_{11}+b_{i}$
46. $i_{t}=\sigma\left(z_{12}\right)$
\# Derivative of eq. $9 z_{8}=W_{i h} h_{t-1}$ [dW $\left.{ }_{i h}, ~ d h_{t-1}\right]+=\operatorname{deriv}\left(d z_{8}, W_{i h}, h_{t-1} \prime^{\prime}{ }^{\prime \prime}\right)$
\# Derivative of eq. $8 z_{7}=W_{i C} C_{t-1}$ $\left[\mathrm{dW}_{\mathrm{ic}}, \mathrm{dC}_{\mathrm{t}-1}\right]+=\operatorname{deriv}\left(\mathrm{dz}_{7}, \mathrm{~W}_{\mathrm{ic}}, \mathrm{C}_{\mathrm{t}-1},^{\prime}{ }^{\prime \prime}{ }^{\prime}\right)$
... continued from previous slide \# Derivative of eq. $7 f_{t}=\sigma\left(z_{6}\right)$ [dz ${ }_{6}$] += deriv(df ${ }_{t}{ }^{\prime}$ sigmoid')
\# Derivative of eq. $6 z_{6}=z_{5}+b_{f}$ $\left[\mathrm{dz}_{5}, \mathrm{db}_{\mathrm{f}}\right]+=\operatorname{deriv}\left(\mathrm{dz}{ }_{6}, \mathrm{z}_{5}, \mathrm{~b}_{\mathrm{f}},^{\prime}+^{\prime}\right)$
\# Derivative of eq. $5 z_{5}=z_{3}+z_{4}$ $\left[d z_{3}, ~ d z_{4}\right]+=\operatorname{deriv}\left(d z_{5}, z_{3}, z_{4},{ }^{\prime}+^{\prime}\right)$
\# Derivative of eq. $4 z_{4}=W_{f x} x_{t}$ $\left[d W_{f x}, ~ d x_{t}\right]+=\operatorname{deriv}\left(d z_{4}, W_{f x}, x_{t} \prime^{\prime}{ }^{\prime \prime}\right)$
\# Derivative of eq. $3 z_{3}=z_{1}+z_{2}$ $\left[d z_{1}, d z_{2}\right]+=\operatorname{deriv}\left(d z_{3}, z_{1}, z_{2},{ }^{\prime}+^{\prime}\right)$
\# Derivative of eq. $2 z_{2}=W_{f h} h_{t-1}$
47. $z_{1}=W_{f C} C_{t-1}$
48. $z_{2}=W_{f h} h_{t-1}$
49. $z_{3}=z_{1}+z_{2}$
50. $z_{4}=W_{f x} x_{t}$
51. $z_{5}=z_{3}+z_{4}$
52. $z_{6}=z_{5}+b_{f}$
53. $f_{t}=\sigma\left(z_{6}\right)$ [$\mathrm{dW}_{\mathrm{fh}}, ~ d h_{\mathrm{t}-1}$] += deriv($\left.\mathrm{dz}_{2}, \mathrm{~W}_{\mathrm{fh}}, \mathrm{h}_{\mathrm{t}-1},{ }^{\prime}{ }^{\prime \prime}{ }^{\prime}\right)$
\# Derivative of eq. $1 z_{1}=W_{f C} C_{t-1}$
$\left[\mathrm{dW}_{\mathrm{fC}}, \quad \mathrm{dC} \mathrm{t}_{\mathrm{t}-1}\right] \quad+=\operatorname{deriv}\left(\mathrm{dz} \mathrm{z}_{7}, \mathrm{~W}_{\mathrm{fC}}, \mathrm{C}_{\mathrm{t}-1},{ }^{\prime}{ }^{* \prime}\right)$
return $\mathrm{dC}_{\mathrm{t}-1}, \mathrm{dh}_{\mathrm{t}-1}, \mathrm{~d} \mathbf{x}_{\mathrm{t}}, \mathrm{d}[\mathrm{W}, \mathrm{b}]$

Caveats

- The deriv() routine given is missing several operators
- Operations involving constants ($z=2 y, z=1-y, z=3+y$)
- Division and inversion (e.g $z=x / y, z=1 / y, z=A^{-1}$)
- You may have to extend it to deal with these, or rewrite your equations to eliminate such operations if possible
- In practice many of the operations will be grouped together for computational efficiency
- And to take advantage of parallel processing capabilities
- But the basic principle applies to any computation that can be expressed as a serial operation of unary and binary relations
- If you can do it on a computer, you can express it as a serial operation
- In fact the preceding logic is exactly what we use to compute derivatives in backprop
- We saw this explicitly in the vector version of BP for MLPs.

